
Chapter 4

[87]

Here is the code for the Customer class:
using OMS.CodeTier.DAL;

namespace OMS.CodeTier.BL
{
 public class Customer
 {

 private int _ID;
 private string _name;
 private string _address;
 //more private members go here

 public int ID
 {
 get { return _ID; }
 set { _ID = value; }
 }

 public string Name
 {
 get { return _name; }
 set { _name = value; }
 }

 //more properties go here

 public void Add()
 {
 CustomerDAL.AddCustomer(this);
 }

 public void Delete(int customerID)
 {
 CustomerDAL.DeleteCustomer(this.ID);
 }

 //other methods..
 }
}

We have already seen all of these methods in Chapter 3. The only difference in
this chapter is that instead of being in a logical layer inside the main web project,
the BL classes are physically separated into another tier, and will compile into a
different assembly.

The same thing goes for the DAL code. It is exactly the same as in Chapter 3, but is
now under a different project and a new assembly.

Note that the BL code and the DAL code are still not physically separated. They
are logically partitioned under different namespaces but under the same assembly
(which means that they are under the same tier). But the GUI tier is now different
from the BL and DAL tiers. This gives us the flexibility to change the BL and
DAL assembly without re-compiling the GUI tier. Also, this structure gives us the

N-Tier Architecture

[88]

flexibility to use the current OMS.CodeTier assembly in other GUIs in addition to
this one. For example, we can refer to and add this assembly to a Windows-based
console application for our Order Management System, making our code
more re-usable.

So we have achieved a greater degree of loose-coupling than the 1-tier solution
architecture we studied in the previous chapters. In the next section, we will
further de-couple the BL and DAL into separate tiers, and understand the 5-tier
architectural approach.

5-Tier Architecture
With a 5-tier system, we introduce more redundancy into the application as a whole,
along with separating the BL and DAL code into physical assemblies. This is how a
sample 5-tier system would look like:

Presentation tier
UI tier
Logical tier containing business logic (BL tier)
Data access tier (DAL tier)
Data tier (physical database)

Now why do we need to separate the logical layer and data layer into physical tiers?
There can be many reasons to go for this architectural configuration. Some of them
are listed here:

You want further decoupling of the layers to introduce a flexible architecture
for your project. Let me explain this further. When we have business and
data access code in the same assembly (but logically separated in different
files or using namespaces), we cannot distribute the code separately. In most
enterprise applications, there is a greater need for code re-use. Some third-
party applications might want to use our applications' business logic code
(such as consuming an API) and some might want to use our data access
code. In such cases, if we go for a layered solution, then changing anything
in DAL would necessitate re-compiling the whole assembly, which also
includes business logic assembly too. And this unnecessary change might
create ripple effects in the application as the same DLL might be used in
other third-party applications. So this should be avoided for large enterprise
applications. For flexible adaptability, it is better to separate BL and DAL into
their own assemblies.

•
•
•
•
•

•

